
����������
�������

Citation: Hilberger, H.; Hanke, S.;

Bödenler, M. Federated Learning

with Dynamic Model Exchange.

Electronics 2022, 11, 1530. https://

doi.org/10.3390/electronics11101530

Academic Editor: Gemma Piella

Received: 31 March 2022

Accepted: 9 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Federated Learning with Dynamic Model Exchange
Hannes Hilberger * , Sten Hanke and Markus Bödenler

eHealth Institute, FH JOANNEUM University of Applied Sciences, 8020 Graz, Austria;
sten.hanke@fh-joanneum.at (S.H.); markus.boedenler@fh-joanneum.at (M.B.)
* Correspondence: hannes.hilberger@fh-joanneum.at

Abstract: Large amounts of data are needed to train accurate robust machine learning models, but
the acquisition of these data is complicated due to strict regulations. While many business sectors
often have unused data silos, researchers face the problem of not being able to obtain a large amount
of real-world data. This is especially true in the healthcare sector, since transferring these data is
often associated with bureaucratic overhead because of, for example, increased security requirements
and privacy laws. Federated Learning should circumvent this problem and allow training to take
place directly on the data owner’s side without sending them to a central location such as a server.
Currently, there exist several frameworks for this purpose such as TensorFlow Federated, Flower, or
PySyft/PyGrid. These frameworks define models for both the server and client since the coordination
of the training is performed by a server. Here, we present a practical method that contains a dynamic
exchange of the model, so that the model is not statically stored in source code. During this process,
the model architecture and training configuration are defined by the researchers and sent to the
server, which passes the settings to the clients. In addition, the model is transformed by the data
owner to incorporate Differential Privacy. To trace a comparison between central learning and the
impact of Differential Privacy, performance and security evaluation experiments were conducted. It
was found that Federated Learning can achieve results on par with centralised learning and that the
use of Differential Privacy can improve the robustness of the model against Membership Inference
Attacks in an honest-but-curious setting.

Keywords: Federated Learning; Differential Privacy; privacy preserving; membership inference attack

1. Introduction

Machine learning models need large and diverse datasets to train algorithms. Ideally,
data are collected collaboratively to generate robust and bias-free models. However,
there are several issues that need to be addressed when training models with health
data: (1) different locations of data such as in healthcare facilities, Internet of Medical
Things (IoMT) devices, or mobile phones [1]; (2) data anonymisation such as removing
metadata such as the patient name or date of birth, which is often not sufficient to guarantee
privacy [2]; (3) imbalance of features in training, as well as inadequately large datasets [3].
Furthermore, due to strict data protection guidelines, especially in the health sector [4], it is
often difficult to transport data, and consequently, they remain in unused data silos. If a
hospital uses only its own data to train a machine learning model, the resulting lack of
generalisation would render the model useless for other institutions [5].

Federated Learning should address these points and make it possible for healthcare
organisations to collaboratively train models in different locations. Federated Learning (FL)
is a method in which several clients train a model together, and the results are summarised
by a central instance, such as a server. Since this technology has mainly been described
for mobile devices [6], the term FL has been further subdivided into Cross-Device-FL
(CDFL) and Cross-Silo-FL (CSFL). While CDFL deals with mobile or IoT devices, CSFL uses
data from different organisations stored in data silos [7]. Our proposed method is mainly
concerned with CSFL. Federated Averaging (FedAVG) is introduced to combine the clients’

Electronics 2022, 11, 1530. https://doi.org/10.3390/electronics11101530 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101530
https://doi.org/10.3390/electronics11101530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3867-0651
https://orcid.org/0000-0003-3833-4252
https://orcid.org/0000-0001-6018-7821
https://doi.org/10.3390/electronics11101530
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101530?type=check_update&version=1


Electronics 2022, 11, 1530 2 of 13

local models by calculating the average of the trained models. After the clients have trained
the model on their local data, they send their parameters back to the central instance [6,8],
which then carries out the FedAVG procedure. There are different methodologies for the
averaging procedure, as listed in [8–10].

The use of FL in healthcare has already been evaluated in several experiments. For ex-
ample, a model was trained by using Federated Learning to predict the number of hospital-
isations for cardiac events in the following calendar year based on Electronic Health Record
(EHR) data [1] over a cohort of 45,579 patients. Another use case potentially arises in brain
tumour segmentation, as training a model is made difficult due to the limited data [11] of
one clinical centre alone.

Not only institutions have an interest in training models, but also researchers who,
if they are not cooperating with other companies, have to work with publicly available
datasets. Here, we propose an architecture, Federated Learning-Dynamic Model Exchange
(FL-DMX), which addresses the aforementioned points. FL-DMX should allow data sci-
entists to send their model structure with the training configuration to a server, which
forwards the requests to clients with data silos. The clients can define the so-called Dif-
ferential Privacy themselves through configurable parameters. This method provides the
advantage that several people can independently train their models on the data without
having direct access to it while preserving privacy. In the end, the best model could then
be taken and further evaluated. To our knowledge, such an infrastructure of a privacy-
preserving dynamic model exchange has not yet been established, and therefore, it fills the
gap of bringing the entire model to the clients. With the proposed approach, we contribute
to ensuring that people who cannot sign such agreements, but who have to be consulted
during clinical trials, also have the opportunity to train models for this purpose. This could
also be a valuable contribution to university teaching, as students could train directly on
real datasets without relying on toy datasets.

2. Related Work

In FL, there are also several challenges that need to be overcome. For example, a high
communication bandwidth is required between the clients and the server, which could be
reduced by restricting the participating clients or by using various compression methods.
Another limitation is that the data are mostly Not Independently and Identically Distributed
(Non-IID), e.g., each client does not have all classes for a classification task [4,7,12]. In this
section, the security and privacy aspects are examined in more detail before the frameworks
are discussed.

2.1. Security and Privacy

Research areas are also concerned with attack vectors in Deep Learning and FL. Model
Inversion Attacks, for example, can reconstruct features or entire record entries [13–15]. It
was demonstrated by [15] that Optical Coherence Tomography (OCT) and Chest X-Ray
images can be reproduced. Advanced Persistent Threat (APT) attacks are another method
used in an attempt to gain access to confidential information by trying to find the codes of
target systems at the onset of tasks to gain access to the system. As illustrated in [16], APT
attacks can be identified and classified. Since we are incorporating TF Privacy [17] in our
method and it integrates Membership Inference Attacks, as well as Differential Privacy, we
will introduce them in more detail.

Membership Inference Attacks (MIAs) are used to analyse data points to determine
whether they are included in the training dataset or not. The assumption in MIA is that
models behave differently on data they see for the first time or have already used in
training [18]. The goal is to create an attack model that can recognise these differences and
thereby decide whether a dataset was part of the training or not. For this purpose, so-called
shadow models are trained, whereby the attacker is aware whether certain datasets were
used in these models. The target model is the model the MIA is carried out on. Supervised
learning can then be used to train the shadow models so that the output is either “in” or



Electronics 2022, 11, 1530 3 of 13

“out”, depending on whether they have the property or not. For TensorFlow Privacy [17],
a modified form of this attack is used, which states that the predictions of the original
model are sufficient to make statements about the membership of data points [19].

FL aims to ensure that data remain in their data silos while not being disclosed [20].
Differential Privacy (DP) attempts to maintain the global statistical distribution while
reducing information about an entity [21]. DP reduces the vulnerability of Model Inversion
Attacks [15], as noise is placed on data. Therefore, a noise of a Laplace or Gaussian
distribution is added to increase the difference of the two datasets and to minimise the risk
of making a statement about the property of an entity. Moreover, there are several reasons
why the Gaussian mechanism is preferable to Laplace’s, one being that the noise in the
Gaussian mechanism comes from the same distribution as the error that is already present
in the dataset [22].

2.2. Federated Learning Frameworks

Recent research in the context of Federated Learning infrastructure is also looking at
the integration of Blockchain technology [23,24], which provides the advantage of handling
trust issues between a central node and participants, as well as operations performed by
the central node, e.g., the averaging mechanism in FL [25]. For healthcare, the authors
of [23] described an infrastructure based on FL and Blockchain to address the challenges
of data security and prediction of COVID-19 for IoMT scenarios. Yet, to keep our method
simple and to clearly evaluate the potential of FL, the evaluation and integration of a
Blockchain and FL will not be further addressed in this paper. Further work also deals with
the use of edge servers that receive the local parameters and aggregate them before they
are forwarded to the central server [26]. A data owner can freely select an edge server and
receives a reward depending on the amount of data. This would have the advantage of
reducing global communication between the central server and the data owners, but also
lower the dropout rate, as well as efficient resource assignment. These can be self-organised
in terms of the autonomy of the data owners to choose which edge servers to be connected
to, the allocation of resources, such as bandwidth, by the edge servers, as well as the
individual preferences by the central server regarding payment [27]. Their method was
tested in an evolutionary game approach where the aim was to maximise the output for
each component.

Nevertheless, other open-source FL frameworks exist, and our proposed method will
be compared with a selected few. TensorFlow Federated (TFF) [28] was chosen because it
uses TensorFlow Privacy and only works with TensorFlow models like our framework does
as well. PySyft/PyGrid introduced a data-centric approach [29], which is similar to FL-DMX
and, therefore, necessary for comparison. However, unlike our framework, PySyft/PyGrid
uses PyTorch models and an iterative rather than parallel approach to training. Flower
offers a framework-independent approach and has no built-in security mechanisms [30]. It
was used to compare the accuracy for training with our proposed method.

2.2.1. TensorFlow Federated

TensorFlow Federated (TFF) [28] is a library that is only compatible with Tensor-
Flow [31]. TFF is described as follows [28]:

“TFF enables developers to simulate the included Federated Learning algorithms on their
models and data, as well as to experiment with novel algorithms.”

Currently, according to this description, TFF can only be used to simulate FL. Here,
we want to represent a real machine-to-machine communication, so a further description
will not be provided.

2.2.2. PySyft and PyGrid

PySyft and PyGrid are part of the Syft environment [32] and use PyTorch [33] to train
models. PySyft uses the previously mentioned technologies FL, as well as DP, Multi-Party-
Computation (MPC), and Homomorphic Encryption (HE) [34] to decouple the data from



Electronics 2022, 11, 1530 4 of 13

the training of the model [32]. PySyft is a library that defines the objects, abstractions, and
algorithms. PyGrid offers the possibility for the implementation of FL systems with real
terminals. The architecture variant Model-Centric-FL (MCFL) is a method in which a model
is hosted in PyGrid. In this type, no network is needed as a component. An application
such as a mobile device or a web application wants to participate in a training cycle.
After training, the differences between the local and global model are returned and an
averaging process is performed [32]. In Data-Centric-FL (DCFL), the initial model is sent
by the model owner to the data owners, who train the model with their data. This is
done via so-called workers. After the training has been carried out, the weights are sent
back to the model owner. This represents an iterative process across all data owners over
several rounds [32].

An extension has also been developed for PySyft/PyGrid, which is called PriMIA [15].
With this extension, different medical data formats such as DICOM and datasets from
various modalities (e.g., computed tomography) can be integrated. In order to evaluate
the framework, a dataset of paediatric Chest X-Rays [35] was selected and classified. In FL
without DP and Secure Multi-Party Computation (SMPC) [34], the results deteriorated
by about 0.03% on the validation dataset in contrast with centralised learning [15]. When
SMPC is used, another small loss takes place. When DP is used, the accuracy on the
validation dataset decreases by about 0.07%. This demonstrated that a similar level of
accuracy can be achieved despite the use of protection mechanisms.

2.2.3. Flower

Flower has an advantage over the other frameworks in that it is framework-independent
and can, therefore, act with PyTorch, TensorFlow, or MXNet. The strategy represents an
abstraction of an averaging process. The communication between the client and the server
takes place via Remote Procedure Calls (RPCs) [30].

For DP, there is only one approach so far where the clients can decide whether they
want to use this methodology or not, but this has to be implemented for each client. It must
be ensured that each client has the same model stored. DP is only an implementation of the
TensorFlow Privacy tutorial [17] on the server and client side.

3. Federated Learning in the LETHE Project

FL-DMX will be used in the Horizon 2020 project LETHE, where a multi-centre parallel-
group randomised control trial is conducted with the aim to project the development of
dementia and related symptoms with AI and ML methods. The models are based on MRI
and clinical observational data provided by four clinical centres.

Multi-centred studies including different clinical centres need to decide on complex
data agreements and processes to be able to join data together, transfer data out of the
clinical centre, as well as to perform a joint data analysis. Moreover, agreements sometimes
need to be signed repeatedly when new employees participate in the research. It would
be more convenient if the data could stay in the clinical centre and no data need to be
transferred. This would prevent researchers from developing models, as they do not have
access to the data. With FL-DMX, the data stay in the clinical centres, while the researchers
of the project can find the best suitable model for predicting the onset of cognitive decline,
as intended in the project. Another advantage is that through FL, the cohort and the amount
of data can easily be extended. This is especially relevant for rare data pools in individual
centres or rare events in the data. At the same time, the cohort is expanded without the
risks of transporting health data out of the clinical centre itself. Although FL has shown
that it is possible to collaboratively train models and the data reside with the individual
client, FL still holds the limitation that the model needs to be transferred and data can
be possibly reconstructed, as happened in the aforementioned Model Inversion Attacks.
To overcome this problem, we applied a privacy mechanism to enhance the security, as can
be seen in Figure 1. By introducing a user management system, only authorised persons
can send models to the server.



Electronics 2022, 11, 1530 5 of 13

Figure 1. Federated Learning in the context of LETHE: (1) the data scientist sends his/her model
to a central server; (2) the server forwards request (model architecture, optimiser, loss, training
configuration) to the appropriate clinical centres; (3) clinical centres send their weights after training
back to the server; (4) the server averages the weights with FedAVG; (5) after the client rounds,
defined in the header of the data scientist’s request, have been reached, the final weights are returned
to the data scientist.

4. Federated Learning—Dynamic Model Exchange

While Flower defines the model at each client and PyGrid hosts either the data or a
model, FL-DMX deals with a dynamic transfer of the model to the clients. In the current
implementation of FL-DMX, only TensorFlow is possible; PyTorch is not supported yet.
The transmission of the model itself takes place via pickle or JSON, but JSON is recom-
mended due to security reasons [36]. The communication between model owners (data
scientist), the server, and the clients (data owners) happens primarily via Flask [37]. Cur-
rently, both the clients and the server have endpoints that are addressed via HTTP requests.
Later on, an integration of Flask socket connections between the clients should take place
in order to aggregate the data before they reach the server. DP is fully implemented in
FL-DMX. Here, the optimiser and loss components of the model, once received by the
client, are wrapped with their parameters into the components of TensorFlow Privacy [17]
and then used for training. This holds the advantage that it can also protect against model
owners who are honest-but-curious, as models always incorporate DP. After the training,
the weights are sent back to the server. These are aggregated with FedAVG, and the process
is repeated as many times as client rounds have been defined. The settings for DP are
defined individually by the clients and are defined as follows:

• l2_norm_clip: maximum euclidean norm of a single gradient for a single training
example.

• noise_multiplier: how much noise is added to the gradients.
• num_microbatches: for how many training examples the gradients are clipped at the

same time; for example, with num_microbatches = 32 and minibatch = 256, 32 average
gradients of 8 training examples would be clipped.

It should be noted that a more generalised form of DP, Rényi Differential Privacy
(RDP), is used for TensorFlow Privacy [17]. For the theory, as well as calculation of Rényi
Divergence and Rényi Differential Privacy, [22] and [38] can be consulted.

The workflow of FL-DMX training is visualised in Figure 2. The data scientist first
defines the TF model. Afterwards, the components of the model (architecture, optimiser,
loss) will be extracted as JSON. The information can be retrieved via the TensorFlow/Keras
API. To initiate the training of his/her model, the data scientist creates an HTTP request,



Electronics 2022, 11, 1530 6 of 13

which consists of the training configuration in the header and the components of the model
in the body. The following information must be included in the header:

• Category: dataset on which the model should be trained.
• Epochs client rounds: how many epochs a client should train before averaging.
• Client rounds: how often the weights will be averaged before the data scientist

receives it.
• Batch size.

The request is then sent to the server, which extracts the header information and uses
the category information to find out on which dataset the data scientist wants to train the
model. However, the mapping of clients and corresponding datasets is currently static,
as the required database is yet to be implemented. After forwarding the request to the
clients, each client clones the optimiser and the loss and then converts the optimiser to a
TF Privacy optimiser. Afterwards, the model is recompiled and the training takes place
based on the configuration information of the header. The training itself uses the algorithm
of [39]. This process is repeated until the number of client rounds, as defined in the header,
has been reached. In each step, the weights are averaged. Finally, the averaged weights are
sent back to the data scientist as an HTTP response.

Figure 2. Workflow of FL-DMX training: The data scientist defines his/her model architecture and
training configuration and sends it along with the data request to the server, which coordinates the
training. The server forwards the architecture and configuration to the clients, which train the model
in parallel. First, they transform the optimiser and loss of the model with their DP parameters before
the training is carried out. For each round, the weights are sent back and averaged by the server. This
is an iterative process until the client rounds are reached. Finally, the server sends the weights back
to the data scientist, who updates his/her model.

In general, the FedAVG procedure was oriented towards Flower [40], whereby no
abstraction for various averaging methods has yet been integrated. The advantage of
FL-DMX is the dynamic model transfer, as the model does not have to be defined for each
client compared to Flower. With Flower [40], DP must be integrated by the model, and
the clients have no influence on whether the security mechanisms have been implemented.
With DCFL from PyGrid and FL-DMX, the training can always start because the number of
clients is known by the server.

A similar procedure was adopted by PyGrid [29], but while PyGrid only works
with PyTorch models, FL-DMX uses TensorFlow models. DCFL by PyGrid and FL-DMX
introduce a data scientist, who initially starts the training. With FL-DMX, no iterative
learning takes place, as the weights are aggregated and the individual clients are provided



Electronics 2022, 11, 1530 7 of 13

with the training configurations via threads. In addition, precise flags must be stored so
that the server knows which client has specific data. In contrast, the IP addresses and the
flags for FL-DMX are stored with the server, so that a client cannot make false entries.

However, precautions must be taken because FL-DMX trains on unknown models.
One possibility would be to run the applications in a sandbox environment [41]. Another
feature could be to transmit only a certain percentage of weights to the server [42]. In ad-
dition, an evaluation would have to be made after training to see how well the model
is protected against attacks. If the trained model does not fulfil a condition, the weights
would be withheld. Possible evaluations of subsequent attacks could be carried out by the
clients with the final weights:

• Structural similarity of images when performing a Model Inversion Attack [13]; de-
pending on the similarity [43], the weights are not sent to the data scientist.

• Evaluation of the score of an MIA [17].
• Security curves evaluating the robustness of models against attacks [44].

These attacks would be carried out by the individual clients with the final weights
on their own datasets. In the process, they would send their assessment to the server.
The server would then evaluate them and, depending on the result, release the weights to
the model owner or not.

5. Methods
5.1. Datasets

For a comparison of the proposed FL setup with centralised learning, we used MedM-
NIST. MedMNIST [45] consists of a total of ten different medical datasets. For this work,
PathMNIST was used, which consists of a total of nine classes with 89,996 entries for
training, 10,004 for validation, and 7180 for testing. The dataset originally examined col-
orectal carcinoma [46] and was subsequently processed and reduced from 3 × 224 × 224 to
3 × 28 × 28 pixels [45].

5.2. Model Generation

For model creation, AutoKeras [47] was used. This involved a training run with
AutoKeras on the full dataset using the first generated model. The training and validation
dataset were combined before splitting them for each client. The model consists of one
input layer and two subsequent hidden layers, as well as two dropout layers (one before
and one after the flatten layer). The first dropout layer has a keep probability of 0.25, and
the second dropout layer has 0.5. Afterwards, we used the model without weights to train
it with our FL architecture.

5.3. Devices

In general, four devices were involved in the experiments. The devices’ exact speci-
fications can be found in Table 1. In the case of central learning, a separate performance
measurement was carried out for the two devices that were also responsible for learning
in FL (clients). For FL-DMX, the other two devices acted as the server and data scientist,
which send the model to the server.

5.4. Workflow and Test Setup

We applied the PathMNIST dataset in 10 runs on different IID dataset splits (50/50
and 80/20). DP was subsequently enabled by model transformation on the client side to
evaluate the proposed architecture and draw comparisons. The datasets themselves were
created beforehand and then saved and distributed to the clients. The DP parameters for
FL-DMX were determined empirically.

Besides the accuracy, the time was also compared, as the whole model and not only
the weights are exchanged, as well as the model, more specifically the optimiser, is trans-
formed into a TF Privacy optimiser by cloning and recompiling the model components. A



Electronics 2022, 11, 1530 8 of 13

Membership Inference Attack was also used to further utilise TF Privacy, as it is included
in the package.

Table 1. Device specifications.

GPU CPU RAM Role

PC #1 NVIDIA GeForce
GTX 1650

Intel(R) Core(TM)
i5-9400F
CPU @ 2.90 GHz
6/6 Core/Threads

DDR4
16 GB Client

PC #2 NVIDIA GeForce
GTX 660

Intel(R) Core(TM)
i5-9400F
CPU @ 2.90 GHz
6/6 Core/Threads

DDR3
8 GB Server

Laptop #1 NVIDIA GeForce
MX 250

Intel(R) Core(TM)
i7-8565U
CPU @ 1.80 GHz
4/8 Core/Threads

DDR4
16 GB Client

Laptop #2 NVIDIA GeForce
GTX 765M

Intel(R) Core(TM)
i7-4710MQ
CPU @ 2.50 GHz
4/8 Core/Threads

DDR3
8 GB Data Scientist

For our test setup, we still hard-coded the mappings (e.g., one client owns the PathM-
NIST and MNIST dataset, another one only the PathMNIST) of the individual categories
that a client owns at a server. In the future, this should be replaced by a database at the
server side where it is specified which client has which kind of data or which data category.
A more detailed description of the devices used in our test setup can be found in Table 1.
In the first step, the model is created by a data scientist (Laptop #2). Afterwards, the model,
as well as the optimiser and loss are extracted as JSON. Then, the corresponding training
configuration is set in the header, while the model is sent in the body of the request. Finally,
the HTTP request is sent to the server (PC #2), which checks the training configuration
and forwards the request to the clients (PC #1 and Laptop #1) accordingly. After cloning
the model components, converting the optimiser, and recompiling the model, the training
with the respective epochs of the configuration is executed as described in [39]. Finally,
the weights are sent back to the server, which then averages them. When the client rounds
are fulfilled, the weights are sent back to the data scientist.

6. Results

A total of ten training runs were carried out and the average calculated. As shown in
Table 2, no difference was found between centralised learning and FL-DMX. However, it
can be seen here that the weaker device can negatively influence the time for execution.

DP was then implemented for FL-DMX, which performs a client-side transformation
of the Keras optimiser and the loss. The parameters for DP were empirically determined or
calculated as follows:

• Number of microbatches = Batch Size;
• Clipping threshold = 0.85;
• Noise multiplier = 1.3;
• Calculated ε = 0.538 (80% of data); 0.484 (20% of data); 0.59 (50% of data);
• δ = 1 × 10−5;
• Optimal divergence order (α): 21.0.

It was expected that the implementation of DP would decrease the accuracy, since
according to [17], a noise multiplier of at least 0.3 is recommended. To achieve a higher
level of security, we wanted to use a greater value than 0.3 and, therefore, decided to use 1.3.
Therefore, an additional comparison with an increased number of epochs was carried out
as compensation. In contrast to [15], experiments were also realised that only implemented
DP without MPC. Furthermore, a slightly larger ε with 6.0 and a δ of 1.9 × 10−4 of [15] was



Electronics 2022, 11, 1530 9 of 13

chosen. The results can be understood because there is a similar loss of accuracy on the test
dataset due to the introduction of DP.

Table 2. Evaluation of the Federated Learning frameworks after ten runs with accuracy and duration.

Parameter Set #1 1 Parameter Set #2 2

Time in Seconds Accuracy Time in Seconds Accuracy

TF without FL-PC-GPU 3 ~323.4 83.78

TF without FL-Laptop-GPU 4 ~597 82.93

FL-DMX-GPU-without DP ~294 82.26 ~255 84

FL-DMX-GPU-with DP ~298 77.67 ~254 79.45

FL-DMX-GPU-with DP (50 Epochs) ~593 80.71 ~495 80.51
1 For FL: Learning Rate: 0.001; Optimiser: Adam; Loss: Cross Entropy; Dropout Layer 1: 0.25; Dropout Layer 2:
0.5; Epochs: 25; Batch Size: 64; IID Data Split FL: 50/50. 2 For FL: Learning Rate: 0.001; Optimiser: Adam; Loss:
Cross Entropy; Dropout Layer 1: 0.25; Dropout Layer 2: 0.5; Epochs: 25; Batch Size: 64; IID Data Split FL: 80/20.
3 Parameter sets differ in the FL distribution; values for this line are the same for both parameter sets. 4 Parameter
sets differ in FL distribution; values for this line are the same for both parameter sets.

Membership Inference Attack

Subsequently, the MIA of [17] was applied to the models with the highest accuracy.
The use of FL alone does not improve security compared to centralised learning. The use
of DP reduces the likelihood of the attacker guessing whether the data point was used
in the training data. Figure 3 shows the ROC curves of the respective attacks with the
highest AUC. In these cases, a lower AUC implies that the attacker has a lower chance of
assigning the membership probability. The AUC thus represents the success rate for the
attack, meaning that lower AUC values are better in terms of security against MIA.

(a) (b)

(c) (d)

Figure 3. Membership Inference Attack on different models. (a) MIA on the model with the best
accuracy without FL. (b) MIA on the model with the best accuracy with FL and without DP. (c) MIA
on the model with the best accuracy with FL and DP 25 epochs. (d) MIA on the model with the best
accuracy with FL and DP 50 epochs.



Electronics 2022, 11, 1530 10 of 13

7. Discussion

The experiments in Table 2 showed that our proposed architecture, which incorporates
a dynamic model exchange while preserving privacy, can compete with central learning
in terms of accuracy in the IID setting. This is in line with previous research, where the
accuracy of FL and centralised learning has been shown to be comparable [15,30].

With the introduction of DP, the results in Table 2 show a minimal loss. Specifically,
the accuracy reduced from 82.26% to 77.67%. With double the number of epochs, the accu-
racy can be increased to 80.71%. We could not find any negative impact on the execution
time by transferring the entire model, as well as transforming the optimiser into a TF Pri-
vacy optimiser. However, increased network traffic may occur. For practical applications,
it must be considered whether performance or utility is more important. Flower only
provides minimalistic approaches without privacy-supported implementations, in contrast
to PyGrid. However, Flower could become a good alternative for mobile devices in the
future, as this framework can also work with an unknown number of participants and the
training accordingly only starts when a certain number is reached.

In addition to the already existing frameworks, FL-DMX was introduced, which inte-
grates a dynamic exchange of models and, thus, introduces an additional party, the model
owners or researchers (data scientists), who do not have any data, but still want to train
their models with real data. This approach, in contrast to Flower, serves for a static number
of participants that is always known to the server. A similar basic idea is followed in
PyGrid, the difference being that FL-DMX is purely based on TensorFlow and there is no
iterative learning or hosting of the data, since the training is performed directly by the
clients and the server knows the classes of data. The clients with the weakest hardware
would have an even greater impact, as the other clients would not be able to perform any
operations and would have to wait for this one. FL-DMX also offers the possibility to set
the parameters for DP independently for each client.

An example use case for DCFL and FL-DMX would be clinic networks, where the
individual clinics carry out the training and are coordinated by a central body. Researchers
can send their models to the central body, which then coordinates the training on the data
from the clinics. However, incentives (e.g., financial) would have to be created for both the
clinics and the central organisation to make their resources available. However, especially
in multi-centre studies, researchers could support clinicians in training models without
having direct access to the data.

Another problem is the amount of data available from the individual hospitals, as this
can vary. Here, some that only have few data could provide the test datasets so that smaller
hospitals can also participate and contribute to a better generalisation across sites.

A recommended enhancement for FL-DMX would be a web interface in which model
owners first upload their models and these are evaluated before training. The training
parameters (e.g., the parameter for the number of epochs has the maximum possible value
and would, therefore, block the clients and prevent other trainings) or the model itself (e.g.,
provision of TensorFlow kernels that execute arbitrary code) should be checked. Basically, it
is advisable to train models on a client one after the other, as the performance varies greatly
when training several models at the same time. For this purpose, a kind of pipeline system
could be integrated, which evaluates a model, releases it afterwards, and then trains it.

Another aspect that is still under development is the distribution of roles for pro-
viding the training and test datasets. Doctor’s offices do not have the amount of data as,
for example, university hospitals and would, therefore, have a smaller influence due to the
averaging procedure. Therefore, the opportunity should be created for them to provide
their datasets for the subsequent test set.

Further work can describe the dynamics created by FL-DMX more comprehensively.
Additional questions could relate to prevention (before training the model, architecture
check) and reaction (after training the model, robustness against attacks). Since each client
can determine its own DP parameters, it can happen that the performance of individual
ones is very poor. To circumvent this problem, poor-quality data filtering [48] could be



Electronics 2022, 11, 1530 11 of 13

applied. Our architecture has currently only been tested with IID distributions, and we are
currently investigating on making the dynamic model exchange available for Non-IID data
as well.

8. Conclusions

In summary, FL-DMX has results on par with centralised learning in terms of accuracy,
as well as training duration, but without owning the data. Current FL frameworks offer
extensive documentation, but they have to adapt their source code for changing models.
“Privacy by Design” does not take place, as was demonstrated in the results on MIA. As a
result, DP was introduced, which minimises the probability of a successful attack, but also
has an impact on performance. It is therefore recommended to implement at least DP;
however, the integration of MPC should also be considered. With FL-DMX, a dynamic
approach for FL was presented in which the model is defined by a data scientist and then
distributed to the clients. Security measures must be defined before and after the training
to prevent data leaks. However, it could support researchers in particular in training
models on real data, since the demanding regulations for data acquisition could be reduced,
as these still lie with the data owners. On the other hand, clinical institutions could be
supported in clinical trials without disclosing the data. This could also lead to a greater
willingness to share data.

Author Contributions: Conceptualisation, H.H., S.H. and M.B.; methodology, H.H., S.H. and M.B.;
software, H.H.; validation, H.H. and M.B.; formal analysis, H.H.; investigation, H.H. and M.B.;
resources, S.H.; data curation, M.B.; writing—original draft preparation, H.H.; writing—review and
editing, S.H. and M.B.; visualisation, H.H.; supervision, M.B.; project administration, H.H.; funding
acquisition, S.H. All authors have read and agreed to the published version of the manuscript.

Funding: The LETHE-Project has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No. 101017405 (https://cordis.europa.eu/
project/id/101017405, accessed on 10 May 2020).

Acknowledgments: This research is supported by a larger consortium including Alzheimer Europe,
Idryma Technologias kai Erevnas, Universiteit Maastricht, Kaasa Solution GmbH, i2Grow, Stichting
EGI, Extra Red SRL, Infotrend Innovations Company Limited, Combinostics Oy, and The Lisbon
Council for Economic Competitiveness ASBL.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated

Electronic Health Records. Int. J. Med. Inform. 2018, 112, 59–67. [CrossRef]
2. Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.

The future of digital health with Federated Learning. NPJ Digit. Med. 2020, 3, 119. [CrossRef]
3. Nguyen, D.C.; Pham, Q.V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.A.; Hwang, W.J. Federated Learning for

Smart Healthcare: A Survey. ACM Comput. Surv. 2021, 55, 1–37. [CrossRef]
4. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.

Mag. 2020, 37, 50–60. [CrossRef]
5. Xu, Y.; Ma, L.; Yang, F.; Chen, Y.; Ma, K.; Yang, J.; Yang, X.; Chen, Y.; Shu, C.; Fan, Z.; et al. A collaborative online AI engine for

CT-based COVID-19 diagnosis. medRxiv 2020, 12, 6603. [CrossRef]
6. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017.

7. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]

8. Li, X.; Jiang, M.; Zhang, X.; Kamp, M.; Dou, Q. FedBN: Federated Learning on Non-IID Features via Local Batch Normalization.
arXiv 2021, arXiv:2102.07623.

9. Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair Resource Allocation in Federated Learning. arXiv 2020, arXiv:1905.10497.
10. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated Learning with Matched Averaging. arXiv 2020,

arXiv:2002.06440.

https://cordis.europa.eu/project/id/101017405
https://cordis.europa.eu/project/id/101017405
http://doi.org/10.1016/j.ijmedinf.2018.01.007
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1145/3453476
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1101/2020.05.10.20096073
http://dx.doi.org/10.1561/2200000083


Electronics 2022, 11, 1530 12 of 13

11. Aledhari, M.; Razzak, R.; Parizi, R.; Saeed, F. Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications.
IEEE Access 2020, 8, 140699–140725. [CrossRef]

12. Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated Learning for Healthcare Informatics. J. Healthc. Inform. Res.
2021, 5, 1–19. [CrossRef]

13. Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015; ACM: Denver, CO, USA, 2015; pp. 1322–1333.

14. Geiping, J.; Bauermeister, H.; Dröge, H.; Moeller, M. Inverting Gradients—How easy is it to break privacy in federated learning?
In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 16937–16947.

15. Kaissis, G.; Ziller, A.; Passerat-Palmbach, J.; Ryffel, T.; Usynin, D.; Trask, A.; Lima, I.; Mancuso, J.; Jungmann, F.; Steinborn, M.;
et al. End-to-End privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 2021, 3, 473–484.
[CrossRef]

16. Hassannataj Joloudari, J.; Haderbadi, M.; Mashmool, A.; Ghasemigol, M.; Band, S.S.; Mosavi, A. Early Detection of the Advanced
Persistent Threat Attack Using Performance Analysis of Deep Learning. IEEE Access 2020, 8, 186125–186137. [CrossRef]

17. TensorFlow. TensorFlow Privacy. 2021. Available online: https://github.com/tensorflow/privacy (accessed on 11 October 2021).
18. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership Inference Attacks Against Machine Learning Models. In Proceedings

of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 3–18. [CrossRef]
19. Salem, A.; Zhang, Y.; Humbert, M.; Berrang, P.; Fritz, M.; Backes, M. ML-Leaks: Model and Data Independent Membership

Inference Attacks and Defenses on Machine Learning Models. In Proceedings of the 26th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA, 24–27 February 2019.

20. Rodríguez-Barroso, N.; Stipcich, G.; Jiménez-López, D.; Ruiz-Millán, J.A.; Martínez-Cámara, E.; González-Seco, G.; Luzón, M.V.;
Veganzones, M.A.; Herrera, F. Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework
and methodological guidelines for preserving data privacy. Inf. Fusion 2020, 64, 270–292. [CrossRef]

21. Kaissis, G.; Makowski, M.; Rueckert, D.; Braren, R. Secure, privacy-preserving and federated machine learning in medical
imaging. Nat. Mach. Intell. 2020, 2, 305–311. [CrossRef]

22. Mironov, I.; Talwar, K.; Zhang, L. Rényi Differential Privacy of the Sampled Gaussian Mechanism. arXiv 2019, arXiv:1908.10530.
23. Samuel, O.; Omojo, A.B.; Onuja, A.M.; Sunday, Y.; Tiwari, P.; Gupta, D.; Hafeez, G.; Yahaya, A.S.; Fatoba, O.J.; Shamshirband,

S. IoMT: A COVID-19 Healthcare System driven by Federated Learning and Blockchain. IEEE J. Biomed. Health Inform. 2022.
[CrossRef]

24. Islam, M.J.; Rahman, A.; Kabir, S.; Karim, M.R.; Acharjee, U.K.; Nasir, M.K.; Band, S.S.; Sookhak, M.; Wu, S. Blockchain-SDN-
Based Energy-Aware and Distributed Secure Architecture for IoT in Smart Cities. IEEE Internet Things J. 2022, 9, 3850–3864.
[CrossRef]

25. Dun, L.; Han, D.; Weng, T.H.; Zheng, Z.; Li, H.; Liu, H.; Castiglione, A.; Li, K.C. Blockchain for Federated Learning toward secure
distributed machine learning systems: A systemic survey. Soft Comput. 2022, 26, 4423–4440. [CrossRef]

26. Lim, W.Y.B.; Ng, J.S.; Xiong, Z.; Jin, J.; Zhang, Y.; Niyato, D.; Leung, C.; Miao, C. Decentralized Edge Intelligence: A Dynamic
Resource Allocation Framework for Hierarchical Federated Learning. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 536–550.
[CrossRef]

27. Lim, W.Y.B.; Ng, J.S.; Xiong, Z.; Niyato, D.; Miao, C.; Kim, D.I. Dynamic Edge Association and Resource Allocation in
Self-Organizing Hierarchical Federated Learning Networks. IEEE J. Sel. Areas Commun. 2021, 39, 3640–3653. [CrossRef]

28. TensorFlow. TensorFlow Federated: Machine Learning on Decentralized Data. 2021. Available online: https://www.tensorflow.
org/federated (accessed on 18 June 2021).

29. OpenMined. PyGrid. 2020. Available online: https://github.com/OpenMined/PyGrid (accessed on 11 October 2021).
30. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; de Gusmão, P.P.B.; Lane, N.D. Flower: A Friendly Federated Learning

Research Framework. arXiv 2021, arXiv:2007.14390.
31. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:

A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, Savannah, GA, USA, 2–4 November 2016; USENIX Association: Austin, TX, USA, 2016; pp. 265–283.

32. OpenMined. PySyft. 2021. Available online: https://github.com/OpenMined/PySyft (accessed on 11 October 2021).
33. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14
December 2019; pp. 8024–8035.

34. Ghanem, S.M.; Moursy, I.A. Secure Multiparty Computation via Homomorphic Encryption Library. In Proceedings of the 2019
Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 8–10 December 2019;
pp. 227–232. [CrossRef]

35. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131. [CrossRef]

36. Byrne, D. Full Stack Python Security: Cryptography, TLS, and Attack Resistance; Manning Publications: Manning, CA, USA, 2021.

http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1007/s41666-020-00082-4
http://dx.doi.org/10.1038/s42256-021-00337-8
http://dx.doi.org/10.1109/ACCESS.2020.3029202
https://github.com/tensorflow/privacy
http://dx.doi.org/10.1109/SP.2017.41
http://dx.doi.org/10.1016/j.inffus.2020.07.009
http://dx.doi.org/10.1038/s42256-020-0186-1
http://dx.doi.org/10.1109/JBHI.2022.3143576
http://dx.doi.org/10.1109/JIOT.2021.3100797
http://dx.doi.org/10.1007/s00500-021-06496-5
http://dx.doi.org/10.1109/TPDS.2021.3096076
http://dx.doi.org/10.1109/JSAC.2021.3118401
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://github.com/OpenMined/PyGrid
https://github.com/OpenMined/PySyft
http://dx.doi.org/10.1109/ICICIS46948.2019.9014698
http://dx.doi.org/10.1016/j.cell.2018.02.010


Electronics 2022, 11, 1530 13 of 13

37. Ronacher, A. Flask Documentation. Available online: https://flask.palletsprojects.com/en/2.0.x/ (accessed on 1 July 2021).
38. van Erven, T.; Harremoes, P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820.

[CrossRef]
39. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep Learning with Differential Privacy.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security; Association for Computing Machinery:
New York, NY, USA, 2016; CCS’16, pp. 308–318. [CrossRef]

40. Adap. Flower. 2021. Available online: https://github.com/adap/flower (accessed on 11 October 2021).
41. TensorFlow. TensorFlow Security. 2020. Available online: https://github.com/tensorflow/tensorflow/blob/master/SECURITY.

md (accessed on 11 October 2021).
42. Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.S.; et al. Federated

learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 2021, 27, 1735–1743. [CrossRef]
43. Wang, J.; Song, Y.; Leung, T.; Rosenberg, C.; Wang, J.; Philbin, J.; Chen, B.; Wu, Y. Learning Fine-grained Image Similarity with

Deep Ranking. arXiv 2014, arXiv:1404.4661.
44. Trusted-AI. Adversarial Robustness Toolbox (ART). 2021. Available online: https://github.com/Trusted-AI/adversarial-

robustness-toolbox (accessed on 11 October 2021).
45. Yang, J.; Shi, R.; Ni, B. MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis.

In Proceedings of the IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021;
pp. 191–195. [CrossRef]

46. Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al.
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med.
2019, 16, e1002730. [CrossRef]

47. Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining; Association for Computing Machinery: New York, NY, USA, 2019;
KDD’19, pp. 1946–1956. [CrossRef]

48. Edemacu, K.; Kim, J.W. Multi-Party Privacy-Preserving Logistic Regression with Poor Quality Data Filtering for IoT Contributors.
Electronics 2021, 10, 2049. [CrossRef]

https://flask.palletsprojects.com/en/2.0.x/
http://dx.doi.org/10.1109/TIT.2014.2320500
http://dx.doi.org/10.1145/2976749.2978318
https://github.com/adap/flower
https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md
https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md
http://dx.doi.org/10.1038/s41591-021-01506-3
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
http://dx.doi.org/10.1109/ISBI48211.2021.9434062
http://dx.doi.org/10.1371/journal.pmed.1002730
http://dx.doi.org/10.1145/3292500.3330648
http://dx.doi.org/10.3390/electronics10172049

	Introduction
	Related Work
	Security and Privacy
	Federated Learning Frameworks
	TensorFlow Federated
	PySyft and PyGrid
	Flower


	Federated Learning in the LETHE Project
	Federated Learning—Dynamic Model Exchange
	Methods
	Datasets
	Model Generation
	Devices
	Workflow and Test Setup

	Results
	Discussion
	Conclusions
	References

